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THEORY AND CIRCUIT MODEL FOR LOSSY COAXIAL TRANSMISSION LINE

T.C. Genoni, C.N. Anderson, R.E. Clark, J. Gansz-Torres, D.V. Rose, D.R. Welch

Voss Scientific, LLC, 418 Washington ST SE, Albuquerque NM 87108

Abstract:

The theory of signal propagation in lossy coaxial transmission lines is revisited and new
approximate analytic formulas for the line impedance and attenuation are derived. The accuracy of these
formulas from DC to 100 GHz is demonstrated by comparison to numerical solutions of the exact field
equations. Based on this analysis, a new circuit model is described which accurately reproduces the line
response over the entire frequency range. Circuit model calculations are in excellent agreement with the
numerical and analytic results, and with finite-difference-time-domain simulations which resolve the skin-
depths of the conducting walls.
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I. Introduction:

Previous work has highlighted the need for models that accurately describe the frequency dependent
attenuation of signals propagating in transmission lines with finite conductivity walls [1]. A number of
authors have used field analysis to investigate the impedance and attenuation in lossy coaxial lines [2-5].
The frequency dependence of the impedance poses a difficult numerical challenge for which a number of
models have been proposed. These include conformal mapping [1], direct integration of the transmission
line equations [6], Laplace transform methods [7], and circuit models [8].

Figure 1. Schematic of coaxial transmission line geometry. Attenuation is due to finite conductivity in
conducting regions II and IV.

In this paper we first revisit the theory of the principal transmission line mode in a lossy coaxial
line shown schematically in Fig. 1. The principal mode is that with the smallest transverse propagation
constant in region III. An early analysis by Schelkunoff [2] treated the case of a solid inner conductor

( 0 0a  ) and a finite thickness outer conductor. He assumed negligible displacement currents and equal

and opposite conduction currents in regions II and IV, and zero magnetic field outside the outer conductor

( 3r a ). Under these assumptions, he was able to derive approximate analytic expressions for the surface

impedances at 1r a and 2r a . In his classic text [3], Stratton treated a simpler geometry ( 0 0a  and

3a  ) and presented expressions for the electric and magnetic fields in regions II, III, and IV.

Matching the tangential field components at 1r a and 2r a gives a set of equations from which the

transverse and longitudinal propagation constants (and hence the longitudinal attenuation constant) can be
calculated. Stratton derived approximate formulas for the transverse propagation constant in region III as
well as the attenuation constant in the line. Some time later, and under the same simplifying geometry
assumptions, Daywitt [4] repeated the field analysis of Stratton and solved the resulting matching
equations numerically. He compared his “exact” numerical results to the approximate Stratton formula,
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demonstrating its high accuracy from DC up to about 20 GHz. More recently, Gallant [5] used the
“surface impedance” concepts employed earlier by Schelkunoff to generalize the Stratton/Daywitt
approximate formulas to include the effects of a finite outer conductor. In what follows we generalize the
analysis further, taking account of both finite thickness inner and outer conductors. In Sec. 2, we describe
the fields in all five regions and present the tangential field matching equations at the boundaries. In Sec.
3, approximate formulas for the propagation constants are derived and shown to reduce to previously
presented formulas in the appropriate limits. Accuracy of the new formulas is demonstrated by
comparison to numerical solution of the full system of matching equations.

Following this analysis, we propose a new circuit model capable of accurately reproducing the
frequency dependent attenuation in a lossy coaxial line from DC to 100 GHz. In Sec. 4 we give details of
the circuit model and model parameters corresponding to specific coax parameters are given in Sec. 6.
Finite-difference-time-domain (FDTD) electromagnetic simulations which resolve the skin depths of the
conductors are described in Sec. 5. In Sec. 6 we discuss the results of the circuit model calculations and
compare them to the FDTD simulation results and to the theoretical calculations of Secs. 2 and 3.

2. Field Equations and Matching Conditions:

Making use of Maxwell’s equations in the frequency domain,∇× = ( + ) , (1)∇× = − , (2)

we write expressions for the azimuthal magnetic field H and the longitudinal electric field zE in each

region of the coaxial line. Each field component varies with ( , )z t as i t ze   , where the real part of the

longitudinal propagation constant  accounts for the attenuation. For simplicity this factor is omitted in

writing the expressions below.

Region I:

( )II I IH A I h r  (3)

0 ( )z I II IE h A I h r (4)

Region II:

21 1 2 22 2 2( ) ( )H A F h r A F h r   (5)

2 21 3 2 2 22 4 2( ) ( )zE h A F h r h A F h r  (6)

1 2 1 2 1 1 2 1 2 1 1 2)( ) ( ( ) ( ) ( )F h r K h a I h r I h a K h r  (7)

2 2 1 2 0 1 0 222 11( ) ( ) (( ) ) ( )F h r K h a I h rhr I a K h  (8)

3 2 1 2 1 0 2 1 2 1 0 2( ) ( ) ( ) ( ) ( )F h r K h a I h r I h a K h r  (9)
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4 2 1 2 0 0 2 1 2 0 0 2( ) ( ) ( ) ( ) ( )F h r K h a I h r I h a K h r  (10)

Region III:

31 1 3 32 1 3( ) ( )H A I h r A K h r   (11)

3 31 0 3 3 32 0 3( ) ( )zE h A I h r h A K h r  (12)

Region IV:

4 4 2 2 41 1 4( ) ( )H A G h r A G h r   (13)

4 41 3 4 4 42 4 4( ) ( )zE h A G h r h A G h r  (14)

1 4 1 4 3 1 4 1 4 3 1 4( ) ( ) ( ) ( ) ( )G h r K h a I h r I h a K h r  (15)

2 4 1 4 2 1 4 1 4 2 1 4( ) ( ) ( ) ( ) ( )G h r K h a I h r I h a K h r  (16)

3 4 1 4 3 0 4 1 4 3 0 4( ) ( ) ( ) ( ) ( )G h r K h a I h r I h a K h r  (17)

4 4 1 4 2 0 4 1 4 2 0 4( ) ( ) ( ) ( ) ( )G h r K h a I h r I h a K h r  (18)

Region V:

51 1 5( )H A K h r  (19)

5 51 0 5( )zE h A K h r  (20)

In the above expressions, I and K are modified Bessel functions, and the transverse

propagation constants ih are given by

2 2 2
i i i i ih i        , (21)

with

( )
i

i
i i

h
h

i 


 
. (22)

Equations for the coefficients are obtained by matching H and zE at 0 1 2, ,a a a and 3a :

0( )H a : 11 1 21 0 2 0 21 1 2 02 2( ) ( ) ( ) 0A K h a A h a A h aF F   (23)

0( ) :zE a 1 11 0 1 0 2 21 3 2 0 2 22 4 2 0( ) ( ) ( ) 0h A I h a h A F h a h A F h a   (24)

1 :( )H a 21 1 2 1 22 2 2 1 31 1 3 1 32 1 3 1( ) ( ) ( ) ( ) 0A F h a A F h a A I h a A K h a    (25)
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1( ) :zE a 2 21 3 2 1 2 22 4 2 1 3 31 0 3 1 3 32 0 3 1( ) ( ) ( ) ( ) 0h A F h a h A F h a h A I h a h A K h a    (26)

2( ) :zE a 3 31 0 3 2 3 32 0 3 2 4 41 3 4 2 4 42 4 4 2( ) ( ) ( ) ( ) 0h A I h a h A K h a h A G h a h A G h a    (27)

2( ) :H a 31 1 3 2 32 1 3 2 41 1 4 2 42 2 4 2( ) ( ) ( ) ( ) 0A I h a A K h a A G h a A G h a    (28)

3( ) :zE a 5 51 0 5 3 4 41 3 4 3 4 42 4 4 3( ) ( ) ( ) 0h A K h a h A G h a h A G h a    (29)

3( ) :H a 51 1 5 3 41 1 4 3 42 2 4 3( ) ( ) ( ) 0A K h a A G h a A G h a   (30)

Equations (23)-(30) are eight linear homogeneous equations for the ijA which can be written in the

form

0M A  . (31)

Setting [ ] 0det M  gives an equation from which the transverse propagation constant in region III ( 3h )

may be determined numerically. We look for the smallest value of 3h , which corresponds to the principal

mode. The other h’s and  can be calculated from (21) once 3h is found. The corresponding eigenvector

A can then be obtained from (31) and the radial profiles of the electric and magnetic fields calculated, if
desired. Numerical results for a specific coaxial geometry will be presented in the next section for

comparison to approximate closed-form analytic formulas for 3h and  which are derived there.

3. Approximate Full-Frequency Formulas for 3h and  :

In deriving approximate formulas for 3h and  , we invoke the simplifying assumptions made by

Schelkunoff (and later Gallant). The displacement current in the conductors is ignored, and we set

0 3( ) ( ) 0H a H a   (so that the fields in regions I and V are also ignored). This gives 21 42 0A A 
and Eq. (31) reduces to

 
 

2 2 1 3 1 22

32 4 2 1 3 3 1 31

3 323 3 2 4 3 4 2

413 2 1 4 2

( ) 0 1/ 0

( ) log / 2 0
0

0 log / 2 ( )

0 0 1/ ( )

F h a h a A

h F h a h h h a A

Ah h h a h G h a
Ah a G h a

   
              
    

. (32)

In Eq. (32) we take

2 0 2h i  , (33)

and
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4 0 4h i  . (34)

Also, we have used the small argument approximations for I and K with arguments 3 1h a and 3 2h a . We

set 0  everywhere for simplicity.

Setting the determinant of the matrix in Eq. (32) equal to zero gives the following approximation

to 3h :

 
 
 

 
 

4 2 1 3 4 2

2 1 2 2 1 4

2
2 2 3 0
3 3

2 2 1 4 21

1ˆ
/

1F h a G hi
h

a

k a F h a k a G h
h

l aog a a

   
  

 







, (35)

where

0i ik i   ;    i = 2,4 . (36)

Equation (35) is the generalization of the formula on Gallant page 7 (note the difference in sign

convention). It represents a new approximation for 3h which accounts for the finite thickness of both the

inner and outer conductors. In the limit as 0 0a  we get the Gallant formula on page 7 of Ref. [5], and

as 3a  we get Stratton Eq. (40) on page 552 and Daywitt Eq. (35). In the high frequency limit

 
2
3

2 1 2 1 4 2

1 1

/

i
h

log a a k a k a





 

 
(37)

which is the usual “microwave approximation”. From Eq. (21) we get an approximate formula for the
longitudinal propagation constant:

2 2 2 2
3 3 0

ˆˆ h       , (38)

where 3̂h is given by Eq. (35).

The accuracy of the new approximate formulas for 3h and  [Eq. (35) and (38), respectively] is

illustrated in the numerical calculations below. For these calculations, we adopt the following set of
geometry and material parameters (refer to Fig. 1):

0 0.6a  cm, 1 0.7a  cm, 2 1.4a  cm, 3 1.5a  cm

0i  ; i=1..5 and 0i   ; i=1..5 (39)

17
2 4 5.0 10    s-1 .

The above value of  is representative of relatively high conductivity metals.
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The equation [ ] 0det M  was solved numerically for 3h as a function of frequency for the above

parameters. Substitution into Eq. (21) gives the “exact” numerical solution for the attenuation constant

( )Re  shown in Fig. 2. We see a f dependence at both low and high frequency, with a transition

region near 1 kHz. In Fig. 3 we show the relative error in ̂ ; i.e.,

 Re( ) Re
.

Re( )
Rel Error

 




 . (40)

The relative error is less than 0.3% at all frequencies from DC to 100 GHz, demonstrating the validity of

the new approximate formulas for 3h and  .

Figure 2. ( )Re  from numerical solution of [ ] 0det M  .
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Figure 3. Relative error in ˆ( )Re  .

4. Circuit Model for Lossy Coaxial Line:

It is well known that the simple circuit of Fig. 4 can be used to model a short section of lossy transmission
line, length z (see, for example, pgs. 43-46 of Ref. [9]).

Figure 4. Circuit model for short section of transmission line.

The impedance Z models the frequency dependent dispersion and attenuation present in the line, in our
case due to walls of finite conductivity. A number N of such sections are cascaded together to model a

transmission line of finite length L N z  . The inductance 0L and capacitance 0C are given by

 20 1
0 /

2
L log a a




 (H m-1) (41)
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 
3

0
2 1

2

/
C

log a a





(F m-1) (42)

We note that such a circuit (Ref. [9], pg. 46) produces a longitudinal propagation constant

 2
0 0( ) ( )Z i L i C     (43)

(see Eq. 2.12 of Ref. [9]). We assume here that the shunt conductance is negligibly small.) Comparing
Eqs. (38) and (43) gives

0 3 4 24 2 1

2 1 2 2 1 4 2 1 4 2

( )( )1 1
( )

2 ( ) ( )

G h aF h a
Z

k a F h a k a G h a





 

  
 

. (44)

In terms of the Laplace Transform variable s i ,

3 4 22 4 2 1

1 2 2 1

4

22 1 4

( )( )
( )

2 ( ) 2 ( )

G h aF h a
Z s

a F h a a G h a

 
 

  , (45)

where

0
i

i

s



 ,   i=2,4 , (46)

2 2 2
0 0i i ih s s       ,          i=2,4 . (47)

We note that as 0s , using small argument expansions for I and K,

   2 2 2 20
1 0 2 3 2 4

1 1
lim ( )
s

Z s
a a a a   

 
 

. (48)

We wish to find an electrical circuit which has the above impedance [Eq. (45)] for our model. Following
the analysis of Ref. [10], we arrive at the equivalent circuit shown in Fig. 5.

Figure 5. Equivalent circuit model for impedance Z(s) of Eq. (45) where 1..i n .
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The resistor 0R insures the proper 0s limit, and the subsequent circuit elements are chosen to give

the correct frequency dependence of the impedance. Benchmark calculations with 8n  are included in
Sec. 6.

5. Benchmark FDTD Simulations

The Chicago FDTD code was used to conduct fully electromagnetic 2D ( , )r z simulations of a

coaxial transmission line with finite conductivity walls. Figures 1 and 6 illustrate the geometry
schematically, and the dimensions and parameters are as in Eqs. (39). The conductivity was dropped to

1410  s-1 so as to make resolution of the skin depth in the walls manageable. The simulated
transmission line configuration was started and ended with one cm of a perfect electrical conductor (PEC)
line to simplify the connection input and output boundary conditions. The cell sizes were set at

31.0 10dr   cm and 34.0 10dz   cm. The outer radial boundary was placed 3 cm beyond the outer
radius of the coaxial line. A metal boundary here had negligible effect on signal propagation in the
coaxial line.

Figure 6: Schematic of the FDTD Chicago simulation.

For single frequency runs of 109 and 1010 Hz the length of the lossy line was set to L=40 cm and
L=20 cm, respectively. For 109 Hz, the ( )Re  from Eq. (21) is 0.243 m-1 giving an attenuation of

0.243(0.4) 0.907e  . The attenuation measured from the Chicago simulation agreed to three significant

figures. At 1010 Hz, 1( ) 0.772Re m  and the corresponding attenuation is 0.772(0.2) 0.857e  . Again,

the Chicago simulation result agreed to three significant figures. A final simulation with a short pulse flat-
top voltage input and length L=80 cm was run. Figure 7 shows the input pulse and the attenuated and
distorted output voltage. All these results are compared to results from circuit model calculations in the
next section.
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Figure 7. Short pulse voltage input and voltage output from FDTD simulation.

6. Circuit Model Calculations:

In this section we report on signal attenuation calculations using the circuit model described in
Sec. 4. The model was benchmarked against the numerical and analytic results of Secs. 2 and 3 as well as
the FDTD simulations of Sec. 5.

The first set of calculations corresponds to the parameters of (39) but with 14
2 4 10   s-1

which were used in the FDTD simulations. The circuit model parameters shown in Table 1. were obtained
by performing a least squares fit to the impedance formula of Eq. (45). Overlay of the fit to Eq. (45) is
shown in Fig. 8 – the maximum error in the fits is <0.1% and not visible in the figure. For this first set of
calculations we used 0.001z  m. The circuit consists of a large number N of blocks to give the desired
length of transmission line, L N z  . The coupled differential equations which represent the complete

circuit were solved using a 4th order Runge Kutta solver with time step 135.0 10t s   dictated by the
circuit parameters of Table 1. Results from a series of three single frequency voltage input runs are
summarized in Table 2. Attenuation values calculated using  from Eq. (21), ̂ from Eq. (38), FDTD

simulation, and circuit model calculations all agree to better than 1%. The circuit model was also used to
calculate the attenuation of the short, flat-top voltage input pulse of Fig. 7. The output pulse is shown in
Fig. 9 and is in excellent agreement with the FDTD result.
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n Rn Ln

0 3.19154209 -
1 5.05066329E-06 3.54496414E-06
2 7.61995142E-05 2.62321493E-07
3 6.63213346 9.11242933E-09
4 15.9945196 8.95067161E-10
5 142.329675 3.87129052E-10
6 1153.13619 2.11040256E-10
7 44.3915849 7.41266698E-10
8 13.0879065 2.92021043E-09

Table 1. Circuit model parameters for 14
2 4 10   s-1 and geometry as in (39).

Figure 8. Z(s) from Eq. (45) and circuit model fit for 1
2

14
4 1.0 10 sx    .

f(Hz) L(m) Le  ˆLe  FDTD
Attenuation

Circuit Mod.
Attenuation

1 108 3.0 0.804 0.803 - 0.799
2 109 0.4 0.907 0.906 0.907 0.906
3 1010 0.2 0.857 0.856 0.857 0.851

Table 2. Attenuation of single frequency signals in coaxial line ( 14
2 4 10   s-1).
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Figure 9. Output voltages from FDTD simulation and circuit model calculation.

The circuit model calculations described above were repeated for 17
2 4 5.0 10    s-1 (high

conductivity metal). The corresponding model parameters are shown in Table 3, and the fit to ( )Z s is

shown in Fig. 10 – maximum error in the fit is <1% and again not visible in the overlay. Agreement with
numerical and analytic results shown in Table 4 is again excellent (FDTD simulations at this high
conductivity were impractical). The short pulse voltage output at 50L  m is shown in Fig. 11. The

shape of the output pulse shows the same tilting of the flat-top observed in the calculations for 1410 
s-1.

n Rn Ln

0 6.383084E-04 -
1 9.1270945E-03 2.2475216E-09
2 2.3432059E-03 1.0747672E-08
3 2.2109079E-01 4.71494072E-11
4 8.6811974E-02 1.47303812E-10
5 1.5852013 7.11164226E-12
6 12.6009311 3.82817718E-12
7 5.5375742E-01 1.72513781E-11
8 3.0723828E-02 5.40384424E-10

Table 3. Circuit Model Parameters for 1
2

17
4 5.0 10 sx    and geometry as in (39).
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Figure 10. Z(s) from Eq. (45) and circuit model fit for 1
2

17
4 5.0 10 s     .

f(Hz) L(m) z (m) Le  ˆLe  Circuit Mod.
Attenuation

1 108 100 0.01 0.897 0.895 0.894
2 109 30 0.003 0.900 0.900 0.899
3 1010 10 0.001 0.897 0.896 0.898

Table 4. Attenuation of single frequency signals in coaxial line ( 1
2

17
4 5.0 10 s     ).

7. Summary

New approximate analytic formulas have been derived for the impedance and attenuation
constant of a lossy coaxial transmission line. These general formulas reduce to previously derived results
in the appropriate limits. Accuracy of the formulas from DC to 100 GHz was established by comparison
to numerical solutions based on the exact field equations. A new circuit model was also derived in which
the line impedance is represented by a series of resistor-inductor loops. Model results were shown to be in
excellent agreement with the numerical and analytic results, and were also benchmarked against FDTD
electromagnetic simulations which resolved the conductor skin-depths. The model allows for fast
calculation in a general transmission line code, or as part of a larger circuit model which makes use of
standard differential equation solution methods.
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Figure 11. Short pulse voltage output with 1 175.0 10 s   at L=50m from circuit model calculations.
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